
DISTRIBUTED PEER-TO-PEER METASEARCH ENGINE

CIS 555 PROJECT, SPRING 2007

Debajit Adhikary (debajit@seas.upenn.edu)
Khader Naziruddin (khadera@seas.upenn.edu)

Shalin J. Shah (shalinjs@seas.upenn.edu)

May 4, 2007

1 Introduction

DISTRIBUTED PEER-TO-PEER METASEARCH ENGINE

� PROJECT GOALS

The project builds a peer-to-peer implementation of a Google-style search engine, with distributed, scalable
crawling, indexing with ranking, and integration of search results with a commercial search engine.

The broad goals of the project are as follows:

• To design a system which allows a user to search (a subset of) the Web by specifying one or more
keywords.

• The search results should be of meaning to the user, in a manner suitable to most users.

• Irrelevant pages containing keywords should be accorded a lower significance. The most relevant
pages should appear at the top of the search results page, for maximum benefit to the user.

• It should be easy to scale the system, or any component of it.

• The system should be reasonably self-sustaining with minimal manual intervention.

Other non-technical goals are:

• To design a distributed system that is fault-tolerant, robust and scalable, at the same time efficient
enough to be used in a real-life scenario.

mailto:debajit@seas.upenn.edu
mailto:khadera@seas.upenn.edu
mailto:shalinjs@seas.upenn.edu


� CIS 555 PROJECT, SPRING 2007 PROJECT ARCHITECTURE

• To apply the concepts learnt in this Internet & Web Systems course and apply them firsthand in a project
of practical significance.

2 Project Architecture

� SYSTEM ARCHITECTURE & DESIGN

The project involves the following components, each of which is loosely coupled with the others:

• CRAWLER. The crawler is multithreaded, and has the following features:

– It checks for and respects robots.txt
– It is well-behaved in terms of requesting two or more documents from a server only after a

configurable time interval (we used 100ms).

– Requests are distributed, Mercator-style, across multiple crawling peers built over FreePastry.

– The crawler maintains a list of visited pages, and does not crawl a page more than once.

• FORWARD INDEXER. The forward indexer module is responsble for the following:

– It downloads a page (the page link is sent by the Crawler node), and extracts all links from it,
adding them to a queue.

– It performs text-processing on the page to extract words, and stores this information in the For-
ward Index Store.

– It analyzes word metadata and performs hit processing in a manner analogous to what early
Google used to do. Word metadata analyzed include the following:

WORD METADATA ANALYZED

• HTML tag information (For instance, text inside tags H1 though H6 are assigned
higher weights)

• Text in the Meta tags of HTML documents (which directly specify keywords etc.)

• Text in anchors.

• Text in the title of a web page.

• Text in the URL itself of a link. (Someone searching for, say, a firm like “microsoft”
would generally expect to get authoritative information from its corporate official
site microsoft.com, although other pages may themselves be more relevant)

• Capitalization information is also stored.

2 of 9



� CIS 555 PROJECT, SPRING 2007 PROJECT ARCHITECTURE

– The Forward Indexer broadcasts the word hits information to the Inverted Indexer.

– The Forward Indexer incrementally generates a lexicon. It broadcasts to other nodes (like the
Inverted Indexer) information about the partial lexicon as it is built.

– It calculates term frequencies for words, on a per-document basis.

• INVERTED INDEXER. The Inverted Indexer stores word information against a list of documents.

– It calculates the IDF (Inverse Document Frequency) of keywords

– An Inverted Index Generator thread is responsible for going through the Forward Indexer’s data
and generating the inverted index store. This is analogous to the Sorter thread in the Google
architecture.

– It has two dedicated threads which wait on two queues and listen to incoming requests for a list
of docID’s matching a wordID, document count etc.

• DISTRIBUTED PAGERANKER. Given information from crawling, the Page Ranker performs link
analysis using the PageRank algorithm. The current projects a distributed Page Rank algorithm,
distributed across various Pastry nodes.

• SEARCH ENGINE & USER INTERFACE. A web front-end interface is provided for the end user for
entering search terms, as well as to display the search results. The front end also integrates search
results from Yahoo.

� PEER-TO-PEER COMMUNICATION

The Pastry peer-to-peer substrate is used to provide a decentralized, self-organizing and fault-tolerant over-
lay network over which the application is deployed.

This is the main underlying messaging network over which all the other components of the system commu-
nicate with each other. One Pastry ring is deployed, which is transparent to all other system components.
These components use the services of a pastry node object to send anycast or pseudo-multicast messages to
other nodes. The relevant listeners at these nodes know which messages to dequeue. These messages are
then added to the appropriate queues, from which the worker thread(s) at the nodes can service them.

• To ensure a more evenly distributed hashing, the hostname of a node is concatenated with itself to
generate the minimum bit-length required by the buildNodeId() function.

• The system implements a large number of its own queues to avoid dropped messages in the Pastry
ring. (Pastry does limited buffering of outgoing messages).

In addition to this, a dedicated framework consisting of

3 of 9



� CIS 555 PROJECT, SPRING 2007 PROJECT ARCHITECTURE

• One listener thread

• One (or more) worker threads

• Request queue

• Response queue

is provided to most modules for efficient bufferred inter-module communication.

4 of 9



� CIS 555 PROJECT, SPRING 2007 IMPLEMENTATION

3 Implementation

� CRAWLER

The crawler has been implemented in a fully distributed manner, over a pastry ring. One (or a limited
number of) Crawler thread is run at every node.

If additional crawling performance is required, additional nodes can be deployed, and the system would
scale gracefully.

The web crawler consists of the following nodes:

• LINK EXTRACTOR. It extracts links from a downloaded web page.

• ROBOTS.TXT HANDLER. This specifies which directories and URLs in the web site should or should
not be crawled. This module supports the Allow and Disallow directives as specified in the robots.txt
specification, and supports the ‘*’ clause.

• URL FRONTIER. This is used to maintain crawler politeness, and is used to distribute the crawling
tasks across the various nodes.

• DOWNLOADER. This downloads the HTML code for a web page. The page is split into hits and
meta-information, which is stored.

• URL QUEUE. The crawler adds URLs to this queue. The crawler is responsible for dequeing elements
from this queue.

• URL OBJECT QUEUE. The Forward Indexer fetches a URL object from this queue, downloads the
document, and performs extracts various information from the same.

� PAGE RANKER

The page ranker is implemented in a distributed fashion.

• Whenever a new page is crawled it would have outgoing links. The outgoing links are cleansed for
multiple outgoing links and self links if present are also removed from the ArrayList of outgoing
links.

• Once this is done, the crawler sends two types of messages outgoing links and incoming links.

• Whenever a pageranker receives a incoming link message (UpdateIncoming) it checks in its class level
variable outgoingLinks wether there are any outgoing links for that. If there are any outgoing links it
sends a message to the link pointing to it saying it is healthy (HealthyLink). Whenever a node receives
a HealthyLink message it sends a messsage of type UpdateRank to all its healthy outgoing links.

• Whenever a node receives a UpdateRank it recomputes its rank and if its greater than the threshold
difference it sends it updated value to only the healthy outgoing links.

5 of 9



� CIS 555 PROJECT, SPRING 2007 IMPLEMENTATION

• Once a page stabilizes its rank it sends its new rank only to its dangling links.

PageRank is calculated using the formula:

PR(A) = (1 − d) + d
(

PR(T1)
C(T1)

+ PR(T1)
C(T1)

+ · · ·+ PR(Tn)
C(Tn)

)
d = 0.85

where PR(A) is the PageRank of page A, and pages T1 through Tn have incoming links to page A. C(X) is
the number of outgoing links from a page X.

This is an iterative and incremental process when a new page is crawled the ranks would be recomputed
for all the links to which this document point. This helps us to start with our search engine as soon as our
crawler starts and moreover it stabilizes incrementally whenever a new document joins.

� FORWARD INDEXER

A lexicon is replicated at every node of the distributed indexer. IDF associated with every word. Also, is is
possible to dynamically specify at runtime which words need not be indexed.

The indexing system consists of the following components:

• DOCUMENT PARSER. The document parser is responsible for text parsing of documents, and word
hit analysis.

• FORWARD INDEXER. The Forward Indexer populates the DocWordProperties data structure, which
represents the forward index from a docID to a list of wordIDs.

• DOCWORDPROPERTIES. This is the primary forward index. It stores information about a docId, a
list of wordIds for it, and metadata such as hit information for those words.

• LEXICONMANAGER. The Forward Index generates a Tiny Lexicon at the end of indexing a web
document. It is the responsibility of the LexiconManager consolidate this information into one large
lexicon.

� INVERTED INDEXER

The inverted indexer system is used to generate an inverted index from a wordID to a list of docIDs. Addi-
tional data is also stored for efficiency, and optimized query results. It comprises the following components:

• DOCCOUNTREQUESTHANDLER. This provides a dedicated service to other modules which need to
find the number of documents which are relevant for a given keyword. It is typically used by the
metasearch engine for result item relevancy ranking. It consists of one Listener thread, a DocCoun-
tRequest Queue, and one worker thread to service requests

6 of 9



� CIS 555 PROJECT, SPRING 2007 TECHNICAL IMPLEMENTATION DETAILS

• DOCLISTREQUESTHANDLER. This returns a list of docIDs and other relevant meta-information for
a specified wordID. It is called by the Metasearch node.

• INVERTEDINDEXGENERATOR. This listens to DocWordProperies pastry messages broadcast by the
Forward Indexer, and converts the information into an inverted index format.

• INVERTEDINDEXSTORE. This data structure is used to store the inverted index for a node. Each
node in the distributed system has its own version of the InvertedIndexStore. It is internally stored as
a Berkeley DB database.

� METASEARCH ENGINE

This is a distributed system which listens for user search requests and generates the results after querying
the InvertedIndexer and ForwardIndexer.

4 Technical Implementation Details

Language: Java (JDK 1.5, Servlets 2.4)
Database Backend: Berkeley DB Java Edition 3.2.13
Application/Web Server: Apache Tomcat 5.5 (For client user interface)
Peer-to-Peer Substrate: FreePastry 1.4.4
Result Rendering: XSLT 1.0 generated XHTML

5 Evaluation

PERFORMANCE METRICS

TASK NODES TIME TAKEN (SECONDS)
Cached query 1 0.3
New query (not in cache) 1 2.3

7 of 9



� CIS 555 PROJECT, SPRING 2007 DIVISION OF LABOR

6 Division of Labor

A broad division of labor among the team members is outlined below. All members were involved in
overall design, development, coding and testing.

� DEBAJIT

• Inverted Index and related frameworks

• Berkeley DB components

• Implementation of Worker thread/queue model

• Pastry skeleton

• Report

� KHADER

• Crawler

• Indexer

• Overall integration

• Search interface

� SHALIN

• Distributed PageRank

• Pastry code for overall peer-to-peer node communication

• Queueing data structures

• Robots.txt handler

8 of 9



� CIS 555 PROJECT, SPRING 2007 CONCLUSIONS

7 Conclusions

Our current implementation of the distributed peer-to-peer search engine was observed to perform upto
expectations, and had met all the requisite goals outlined at the outset of its design.

• Each and every component (including PageRank, Crawler, Indexer, and Metasearch) is fully dis-
tributed, resulting in a system which is fault-tolerant and scalable with minimal effort.

• Replication of data structures have been used in some modules (like the Forward Indexer and the Page
Ranker) for faster query reponse time (at the expense of a marginally higher background indexing
time)

We have endeavored to create a system that is robust, scalable and one that can be deployed in a practical
scenario, if not (yet) a commercial one.

One of the bottlenecks in our implementation has been the high proliferation of network messages. This is
one area which we hope we can optimize even further in any future work based on our codebase.

On the whole, the entire design and development effort has been a great learning experience in building a
large scale distributed system, and the results have fully met our expectations.

�

9 of 9


	Introduction
	Project Architecture
	Implementation
	Technical Implementation Details
	Evaluation
	Division of Labor
	Conclusions

